题面
Sol
暴力开根,一个数开根到小于等于\(1\)就不用管了,维护区间\(max\),\(max<=1\)就不用管这个区间,线段树
# include# define RG register# define IL inline# define Fill(a, b) memset(a, b, sizeof(a))using namespace std;typedef long long ll;const int _(1e5 + 5);IL int Input(){ RG int x = 0, z = 1; RG char c = getchar(); for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1; for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); return x * z;}int n, m;ll mx[_ << 2], sum[_ << 2];IL void Build(RG int x, RG int l, RG int r){ if(l == r){ mx[x] = sum[x] = Input(); return; } RG int mid = (l + r) >> 1, ls = x << 1, rs = x << 1 | 1; Build(ls, l, mid), Build(rs, mid + 1, r); mx[x] = max(mx[ls], mx[rs]), sum[x] = sum[ls] + sum[rs];}IL void Modify(RG int x, RG int l, RG int r, RG int L, RG int R){ if(mx[x] <= 1) return; if(l == r){ sum[x] = mx[x] = sqrt(mx[x]); return; } RG int mid = (l + r) >> 1, ls = x << 1, rs = x << 1 | 1; if(L <= mid) Modify(ls, l, mid, L, R); if(R > mid) Modify(rs, mid + 1, r, L, R); mx[x] = max(mx[ls], mx[rs]), sum[x] = sum[ls] + sum[rs];}IL ll Query(RG int x, RG int l, RG int r, RG int L, RG int R){ if(L <= l && R >= r) return sum[x]; RG int mid = (l + r) >> 1; RG ll ret = 0; if(L <= mid) ret = Query(x << 1, l, mid, L, R); if(R > mid) ret += Query(x << 1 | 1, mid + 1, r, L, R); return ret;}int main(RG int argc, RG char* argv[]){ n = Input(), Build(1, 1, n), m = Input(); for(RG int i = 1; i <= m; ++i){ RG int k = Input(), l = Input(), r = Input(); if(k == 1) printf("%lld\n", Query(1, 1, n, l, r)); else Modify(1, 1, n, l, r); } return 0;}